AN ANALYTICAL TREATMENT OF A CLASS OF
PLANE PLASTIC STRAIN PROBLEMS

by
N. Booij*

1. Introduction.

Nottrot and Timman [1] describe the solution to the plane elasto-plastic
problem in the region around a hole of circular shape. When one tries
to extend the method to other than circular shapes, one meets first of all
the question of the determination of the stresses in the plastic region ad-
jacent to the hole, Apart from this question, the plane elasto-plastic problem
can be solved in roughly the same way as was done by Nottrot and Tim-
man, Therefore it seems superfluous to describe more in this paper than
the solution to the plane plastic strain problem in the region around hole
of general shape,

In general, such a problem can be solved by numerical or graphical
methods, making use of Koétter's equations. The way the elasto-plastic
problem is solved, however, requires an analytical expression, One should
remember that the boundary between the plastic and elastic regions is
found by a trial-and-error procedure; this means of course that the boundary
is shifted in each step by a greater or lesser amount. Only an analytical
expression yields the required values without loss of accuracy,

The above mentioned equations of K&tter, though well adapted for graphical
or numerical methods, do not lend themselves to an analytical treatment
because they are non-linear, It was suggested to me by prof. Timman to
apply a method, also indicated by Sokolovsky [2,3] and Geiringer [4]1, to
obtain linear equations by a conversion of the problem. Then the Cartesian
coordinates x and y of the physical plane are considered as the unknown
functions of the isotropic stress o, and 8, which is the angle between the
major principal stress and the x-axis. In the following paper the equations
are derived for the plane plastic strain problem, where yielding is governed
by a generalised Mohr-Coulomb condition,

The theory is based on the same assumptions as Kdtter's theory, namely,
the absence of time effects, and the absence of influence of the intermediate
principal stress. One further restriction must be made: all body forces,
like weight and excess pore pressure gradient, are left out of consideration,

The procedure in the case of the analytical treatment is quite different
from the numerical or the graphical method. While in these latter cases
the computation starts from the given boundary condition, in the analytical
treatment particular solutions are first sought, and these ultimately are
combined to satisfy some given boundary condition.

The linear differential equations, derived in sec,2 below, are solved
in the next sections for a medium such as a sand, which follows the normal
Mohr-Coulomb yield condition., The same procedure can, however, be
applied to a medium not possessing internal friction.

2. Plane Plastic Stvain.

Consider the case of plane plastic strain, where the plasticity condition
is assumed to be given in the following form: the radius 7 of Mohr's circle
is a given function of the isotropic stress o,

T = [%(O’y _Gx)z + T)%y:l% = 7(0o), (1)
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where ¢ = 3(o, + oy ).

Fig. 1.

We introduce the direction of the major principal stress, 0, in the fol-

lowing way:

Ox = o ¥ 7(0) cos 286, :
%y % (.) (3)
Ty = T(0) sin 28,

Fig. 2.

In the absence of body forces the equations of equilibrium take the form

el 8Ty - ! 9 _ 97 gi 28
axx + ayy = (1 + 7' cos 20) 5% 27 sin 26‘ 5% +
28 _

+ 7' sin 26 g_g + 27 cos 26
y 9y
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OTxy L 39y _ i g - 9o 98
3% +3y =T s1n298x+2'rcoszeax+
tilod . 26
+ (1 -7 ' cos 208) == + 27s8in26 5- = 0,
( ) dy dy
where 3—; = 7',

These equations can be simplified by a linear combination, where the
factors by which the equations are multiplied, are +cos 26 and +sin 26
on the one hand, and +sin 26 and -cos 26 on the other.

We find

1y . 1o 26
(cos 26+ T') 3% + sin 286 % + 27T % =0,
. do 98 do _ (4)
sin 26 = 2T = (T' - cos 28) ay - 0.

The unknown functions ¢ and 8 appear in the coefficients, so the equations
(4) are clearly non-linear, The coefficients, on the other hand, do not
depend on x and y; this is the reason that it is fruitful to consider x and
y as the unknown functions, and ¢ and 8 as the independent variables. To
find the differential equations of the reverse problem, one needs the Ja-
cobian transformation determinant A:

80 20
ox 9oy
A7 ae a0l
ox 9oy
o, 8o _ A ¥ do _ dx 90 _ 8y 98 _ ,
sothat o= A gf, 527 D gy 55~ Dy gy - A 5o

Assuming A # 0, equation (4) can be transformed into

9y _ . ax ox _
(t' + cos 28) 59 sin 26 56 t 2T 55 = 0,
9% (®)

sin29§%+2’r g%+(cos29—'r') 39 = 0.

These are indeed linear equations, for every choice of the function T7(o).
Let us now choose 7(o) as it is for a granular material

T(c) = sin g (o + ¢ cotg ¢), (6)

where ¢ is the cohesion, and ¢ is the angle of internal friction (see fig, 2).
For compactness we shall write

p sin g,

and s = (0 +ccotgp)/o,, (7)

o, being an arbitrary constant, and it follows that

i} -1 9
7(0) = Po, s, T = p, 3 crol 3s
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Hence the equations (5), written in terms of the new variables, and with
the above yield criterion, become

9 . ox ox _
(cos 28 + p) B% - sin 26 355 + 2ps 57 = O, )
sin 26 gx+ 2ps §X+ (cos 26 - p) 9x _ 0
08 0s EYe) .

These equations can be solved by the separation of variables, One sees
that in (8), the partial derivatives 8x/ds and d8y/8s are both multiplied by
a factor s, The separation can thus be effected by putting

s*x(0)
s’*Y(e)z

1

X
(9)

Then all coefficients can be divided by sl, so one finds ordinary dif-
ferential equations for X and Y. The complete solution of the partial dif-
ferential equations will be a linear combination of the particular solutions,
found from these ordinary linear differential equations. It is also seen that
all coefficients are trigonometrical functions of 8, and we shall therefore
write -

z = eie (10)
and so (8) now becomes, omitting the factor sh,

%[(z2 + 272 + 2p)iz g—z - (22 -z2%)z g—)z( + 4>pr] =0 (1)’

i [(z2 -z%)z g—} + 4XpY + (2% + 272 - 2p)iz %] =0 (11)"

The expressions for X +iY and X -iY will be seen to be very simple,
much simpler indeed than those for X and Y alone. These expressions
are found by a suitable linear combination_ of (11)' and (11)".
If (11)' and (11)"" are multiplied by (1 - pz®) and i(1 + pz?) respectively,
and then added, there results
iy _ 2 s _ 2 _ 5 3 d(X - 1Y)
X +1iY = pz*(X - iY) - {(0° - 1)/22p}z" =—p—+ (12)
If (11)' and (11)" are multiplied by 1 - pz° and i(l + pz™*) respectively,
and then substracted, there results

X -iY = pz? (X +1Y) + {(0® - 1)/22p}z"" ‘_i_(X_deziﬁ . (13)

By elimination of X +iY and X - iY respectively, we obtain

ax%ol(X + 1Y) + a0 (X + 1Y) - (p? - 1)7° d [Z-l d(X;— 1Y}] =0,

dz z
d d(X - iY (1%)
ax%0% (X - iY) + 4% (X - 1Y) - (p° - 1)z [23 ( 1 )] - 0.

Powers of z are solutions to these equations, because in every term
the powers of z in the coefficients are in balance (d/dz being equivalent
to z}). These solutions can therefore be written as
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n

X +1iY = Cz'*™,
X -iY = D z7'*™,

(15)

The value of m is still dependent on A; or, conversely, A can be found
when m is given; by substitution into (14) it is found that
AL+ gy + [(1 - 0%)/40% ] (m? - 1) = 0. (16)

The relation between C, and Dy, can also be established from these
equations, for from (13) it follows that

Dy, = {p = (L+m)(l - p%)/2p0}Cp =
p{l+(2m + 2)/(m - 1)} Crm. 7

We will limit ourselves to the case where x and y are periodic functions
of 8, with period 27 (see also sec.4). This means that m must be an
integer, since we assumed z = e,

Therefore the particular solutions corresponding to m = 0, 1, +2,,
have to be studied. For each m two values of A are found from (16).

iig -+ 3 [1-mPa-0h)] e (18)

Am and A}, are real when m =0 or m = T1, and complex when m = 12,
*3,... if we limit ourselves to: 0< p< % L /3 or 0< p< 3 " 7, but this 11rn1tat10n
is of course by ho means essential,

We have now found particular solutions of the form Cp S 1 , as (15)
and (9) show. Because the superposition principle holds for the differential
equations (5), the particular solutions can be added to yield the complete

solution

=Y A Al
x+iy = Z7[C,s ™zt T4 Cp e 2. (19)

in = =co

>
w

>
~

’—-—————-—»——-—o

N,

g ey ———— ——

Fig. 3. Representauon of A, and Ap, in the complex plane.
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3. The Particulay Solutions.

In this section the particular solutions are to be studied, in the order
m=0, m=*%1,¥2 and so forth. This ordering is important, because it is
clear from (18) that Ay, = A,y and A, = ALy,

The principal solutions are those corresponding to m = 0:

Ao = -3 + 1p, so from (17): D, = -C

0 o°

The solution (15) is in this case

X +1iY C,z
X ~1iY = D,z

n

so that, according to (9)

C, s')‘0 z
D, gho 771

x + iy

il

x - iy

The functions x and y themselves must be real, otherwise they would not
represent physical reality., Therefore x - iy must be the complex conjugate
of x + iy. The factor s* is real, z and z-! are already complex conjugates,
so C, and D, must also be conjugates. If we denote the conjugate of C,
by C,, we see that

D, = C,.

It was already seen that D, = -C,, so C, = -C,, which can only be true
when C, is purely imaginary. : .
This solution

x = +iC s [-p/2p] sin 0
y = - iCosf(l'P)/ZP] cos ©

corresponds to the solution of the stress distribution around a circular
hole. - Introducing the radial coordinate

(20)

i

r= sy,
(20) can be modified to
r = |c, |l

therefore

s = s, pLeea-a]

where s, is a constant whose value follows from the boundary condition.
Terzaghi [5] finds in this case

- N.,~1
Oy < Gro (r/ro) A2

where o, corresponds to s:
r )Y

N
[

. sin? (17 + Lp) -3cos(Em+e) l+p
N, = tg (45°+ 1¢) = 5 = = 5
cos“(im+ %9 +3cos(37+p) 1-p

N
[N

s0 Np-l = 2p/(1 - p), the exponents are indeed identical.
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The second case, corresponding to m = 0:

_ 1 1 -1
Ap = -3 - 3P

, 80 (17) yields Dy = C|

o
Again as in the preceding case
x -iy = x +1iy, or D(')s>‘o z7l = c;,s%z = C(',s>‘0z'1 .
t = 7 = M 1
D, = C, = C,, so C, is real,
X = C(‘)s'[(hp)/z"]cos ]

c; s [are2lgiy g (21)

Both solutions (20) and (21) represent the plastic stress distribution
around a circular hole, Solution (20) represents the case when the stresses
increase without limit for large values of x and y (s- e¢°). In the other
case (21) s reduces to zero, 7 — 0 and o approaches -c cotg p at a great
distance from the hole, In the case of a hole of general shape, there are
the same two possibilities for the behaviour at infinity. Since, however,
the values of A, corresponding to m = 0, happen to be the onés with the
greatest and the smallest real parts (see fig.3), either solution (20) or
(21) will dominate. Therefore at a great distance from the hole a stress
distribution resembling a circular one, is found,

The next solutions, corresponding to m = +1,+2,... can be considered
as disturbances of the principal solutions already found. These distur-
bances appear when the shape of the hole is not a circle, or when the
load applied to the boundary is not homogeneously distributed.

With X3 = 0, from (14) we see that 3X31¥) = o, X1V = o, 50 that
X +iY = const = C
and X -iY =const=D ;
The factor s™ = 1, so that
x+iy = C_,
Yoo (22)

Cy=D; = 0.

This solution, x = const, -y = const, represents merely a translation of
the coordinate axes, when added to other solutions.
With A = -1, then DY = p-IC}
' D!, = pC'; from (17), and so
x +iy = s71 [:Ciz2 + C'_l] s
x -iy = s'l"[p':lC'1 +-pC'_12'2} .
Since x and y must be real, C!; = pt 6"1;
x +iy = g1 [p(?_le210 + C'_l]. (23)

-ia

Writing C!; = Ce %, then

x = Cs™[pcos (20 +@) + cos a],

Cs-! [p sin (26 +a) - sin a].

As will be proved in sec, 5, #, this term of the complete solution accounts
for the resultant force of the external forces, exerted on the boundary
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curve, The resultant force will be shown to be 4wpo,C}.

For m = *2,+3,... A, and A, are complex; let us write
Ay Al = -3 Hiv, (24)
where v = 3ol [(1 - p?)m® - 1%,
In order to obtain real values for x and y, the solutions

X + iy = S(‘%+ivm) (szl+m + C_mzl'm )%

x -iy = sCHPm (D_z 1My p_glm)

and
(-3 -iv

s m) (C;,ﬂZl-'-m + C'_mzl'm)
x - iy = S(‘% -ivy) (Dlmz-1-+m+ Dt_mz-l-m)

x + iy

must be added to yield

L i ; _ » _ _
X +iy=s72 (Cms”m Z1+m + C_mswm Z1 m 4 C;ns iV Z1+m + Clms ivig Z1 m )g

. -1 iv -1 iv -1~ -i - =i -1i-
x ~iy=st(D _s'Mmz """ +D gm z-1-m 4 p1 gVm pmlm oy 1 g"m piom
m =m m -m

From x + iy = x - iy follows this time (25)
Cp =D, C =D, ,
C,=DbL ., C. =Dy
Substitution into (17) leads to
C_=p[l+@r,+2)/(m-D]C,
C_ = ell+@X, +2)/m-1]Cy . (26)

The particular solutions can be combined linearly to yield a range of func-
tions, satisfying the differential equations, and any boundary condition,
within certain limits.

4. Boundary Values along a Closed Contour,

The next step to be performed is to decide which complete solution ful-
fills the given boundary conditions; in other words, the coefficients Cp
must be computed from the boundary values. Let the stresses be given
along a closed contour I', e.g. the perimeter of a hole. From these given
stresses s and 6 can be computed at every point of I'. Two solutions are
found, more commonly known as the passive and the active solution (Ran-
kine), or the weak and the strong (Prager). One of the two solutions is
to be chosen.

If a parameter t is defined along I', then at any point x_(t) + iy, (1) of
', s(t) and 6(t) are known.

The analysis of the foregoing sections only makes sense if x and y can
be written as continuous functions of s and 6. It is therefore not only
necessary that s(t) and 8(t) should be continuous and that s(l) = s(0) and
8(1) = 6(0) + 2k7 (k being an integer number), but also that every value
of 8 between 0 and 27 is taken only once on the contour I". This means
that 6(t) must be a monotonically increasing or decreasing function of t,
and also that |8(1)-6(0)| cannot exceed 27. It follows that k = £1; we choose
the case k = +1.
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iy -
tz0 XY

Fig.4. The boundary contour T.

~ Th functions x, and y, then are periodic in 6, with period 27; so along
I" we can express X, and y, by means of a Fourier series, or, which is
essentially the same, x,+ iy, by means of a Laurent series:

ei(m+1)9(t)

X, (1) +iy,() = ZTA (27)

m

The problem is then solved, when one can determine the coefficients C
and C; of the complete solution

x+1iy = =*® (Cms>‘1'ﬂ + Cp gt )ei(mﬂ)9

M E ~co

(19)

in terms of the known coefficients A,.

On the contour I' the variable s is also a function of the parameter t.
We will study the simpler case where s = const along I'; by an approepriate
choice of the constant o, (7) s can be made equal to unity. One has now
to compute Cp and C}, from the relation

™ i [} 2 i
E+ Am e1(1'n+1) E+ (Cm + C'rn)el(m+1)6 ,
m=-o I B -0
or C,+Cl =A,. (28)

From (20) and (21) it is known that C{ is real and C, is imaginary,
therefore

C

o]

Co

iIm{A} ,

Re A} . (29)

From (22) it is known that C; = 0

so C; = A,
CL = p7tAy, (30)
C'l = A'l - p_l.-Al.
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For m=2,3,... one has the relations

Cn*t Ci= AL,
CnptClo=A_ .
The second of these can, with help of (26), be transformed into a second
relation for C, and C|, and remembering that A= -3 +iv_:
m
p[1+ (1 +2iy)/(m-1)]C_+ p[l +(1-2iv_)/(m-1)]C, =A_ .

Solving for C,, and C} yields

m

Cp=[+itm/v A, - [itm - 1)/aov ]B__,
Cp, = [+ - idm/y DAy, + [itm - 1)/am JA .

(31)

Equation (31) holds for m = +2,+3,... as well as for m = -2,-3,....
This analysis shows how, from a given shape of the hole and from the
given stresses along the perimeter of the hole, the solution of the stresses
in the plastic region can be performed. The quantity x + iy is found as a
function of s and 8; x and y are its real and imaginary parts. An example
of such a function will be dealt with in sec.S6,

5. Some Properties of the Solution.

t. The special case where 7,= 0, o, = const along the boundary,

Let I' be the perimeter of a hole; let the external force, exerted from
inside T" onto the material outside I', be a constant normal pressure. This
implies that the shear stress along I' is zero, so the directions of the
principal stresses are the tangent and the normal to I'.

dixgty,)

Fig. 5.

The complex number

d(x, + 1 @ , i 1
_(_o_ﬁ_ygl = E™i(m + 1)A e (32)

m= -t
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has the direction of the tangent; if the major principal stress, which has
the direction 6, is tangential to I, then

arg [Smeyiml]

Hence in this case, the factor IL*7 i(m+1)Ameime must be real for every

value of 8; so that =00

im+ 1A, = {(-m+1)A

———

or (m+A, = (m-1)A,, m=1,2,3,... .
and Re{AO} =0 (33)

On the other hand, ele, multiplied by a purely imaginary factor, gives
rise to a complex number whose argument is 8 + ;7. So, if we consider
the other case, that the major principal stress ig directed along the normal
to I', then arg[d(x,+iy,)/d®] = 6 & i#; thus in this case

(m+1)A_ = —(m-l)A_m, m=1,2,3,...
Im{AO§ =0 (34)

In the latter case one sees that the solution (20) does not appear. Then
the solution (21) dominates, s approaches zero at a great distance from
the hole, whereas, in the first of the two cases, the solution (21) is absent,
so that the stresses grow without limit at a great distance,

#i. The lines along which 6 = const intersect the boundary curve T' at right
angles, when o, = const and 7, =0 along T" (see fig.6).

.~ B=const

Fig.®.

The lines 6 = const are found from the total solution by differentiating
partially with respect to s:

9(x + iy)
0s

' - i(m+1)8
1 1 el( )

= ™ (,Ccnsmt sy cystett)

ms-=

Consider now the points of I', in other words, the points where s =1

[a(x +Siy)] o

L (A, Cp + A, Cl)etmHe =
m=-0
io m-=-1——_ imé
e’ 55 A-m)e

+o0

b

= -

(-34,- 5 A, +
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This vector is indeed perpendicular to the vector (32), if either (33) or
(34) is fulfilled., This can be seen as follows.
If condition (33) is fulfilled, then

"

a(x +iy)] i ® ime -1
[-————-—( =S Y)]s=1 e’ m);__tw (m+1)A_e™ (-3 +3p7") =
. o(x + 1
= _1k0 _(—_—Wﬂ

If (34) is fulfilled, then

[a_(?_ggl_ﬂ] =1 e® L' (m+ DA ™ (-1 -1y =

H

n= -
Y a(Xa+ iy) (36)

We see that 9(x + iy)/8s and 08(x + iy)/06 differ by a purely imaginary
factor, so that the difference of their arguments is 37, i.e. they are per-
pendicular to each other,

In the factor X, or A} also appear, which is not surprising, since the
contour I[' can locally be considered as a circular arc. One finds again
Xo or A}, depending on whether one has to do with the active or the pas-
sive solution.

7ii. The resultant boundary force, expressed into the coefficients C.
The resultant of the external forces exerted on the material outside an
arbitrary contour I'', which encloses I', must be the same for every such

I'', because the material was assumed to be weightless, Thus we can
choose for ['' a contour s = const.

f +if,
dx+idy

Fig.7. The force on a small segment.

It is possible to write the force exerted on a small segment in the form
of a complex number;

fl = o'xdy - ’Txy dX,

fg = -oydx + T, dy,
£, + ify = (0, + iT,)dy + (-io, - T )dx =
= (so, - ¢ cotg @) (dy - idx) + psa,e?® (dy + idx) =
= -i(sg, - cotgp)(dx + idy) + ipso,e®® (dx - idy). (37)

Both terms are integrated along I'' separately:

-i(so, ~ ¢ cotgp) ﬁr* (dx + idy) = 0,

ipso, §..e™® (dx - idy) =
= ipsco E+w J.zﬂ' e2.|',9 (Cms7\m + C;n Sk;n)(-i) (m+1)e-i(m+1)e de.

ms-w 5
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The integral of every term vanishes, except the term m = +1; so there
remains

pSo, .27, 2 (Clskl + C'lski),

according to (22): C; = O,

according to (23): A} -1,

so that the result is independent of s, as is necessary.
The resultant force is thus:

drpo,CY . (38)

iv. The resultant moment of the boundary forces.

The moment of the force (37) on a small segment dx + idy, taken with
respect to the origin is:

xfy - yf; = Im [(x -iy) (f1 + ifz)] =
= Im [(x - iy){-i(sq, - c cotg ) (dx + idy) + ipso, e™® (dx - idy)}] . (39)
Again both terms are integrated along a closed contour ['!, where s = const.

ﬁr,lm [(x - iy) { -i(so, - c cotg p) (dx +idy)}] =
= (so, - ¢ cotg ¢)Im [IZﬂ ** (C

= -00
° m

I A

% Dt (Cksxk N CLSA"( )i(k+1)ei(k+1)8:] 4o =

m= -

= (so, - ¢ coth @)Im 27 [ L' (C_ 8™ + Cl s'M)(Cp,s'm+ Ch sm) (rn+1):l - 0,

m= -

because every term of the sum between square brackets is real.
Integration of the second term yields
. 2i6 . .
j;r' Im |:1pscro e (x - iy) d(x - 1y)] =

2 i . v "
psc, Im [J' e mE_+°° (Cps'™ + Cl &'m)e tme
J z-

0}

L (Cos® + CLs k) (k+ 1) kD9 de] i}
m=-w

un

27psa, Im[ E+: (1-m) (cms*m +CL SXI'T])(C_m g'm 4 cl s*%n)] =

H

2rp o, Im [mz_‘,:f: (1-m) (Cmc'-m + C_mc;n + Cmc_mszxmﬂ N C'mC’_msz)‘T'nJ'l )];

CmnC. sAm+l o CnCln s?m*l  is real and therefore its imaginary part
vanishes, because
C, is imaginary, A, is real;
C{ is real, A{ is real;
C,C_, = 0, because C; = 0;
cicy,, = ¢ccl,,
c,C.,=C, C_ follows from (26), m =2,3,...,
SZXm+1 - SZ)\m+1

as is seen in (23), A} is real;

, because A = A},
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The resultant moment is thus

27po, ZT*® (1-m)Im [C_ C' "+ C_CI] =

i =-t

H

2reo, {217 om Im [Cr 0l ]+ BT (-wIm[C, G} -

-21po, { L' (1-m)Im[C, €., ] + L7 (1+m)Im[CnCl, ]} =

& -0o I = ~o0

-47po, L' Im [CmC‘_m] . (40)

I =-

6. Two Examples.

{. In the first example I' is an oval, loaded with a constant normal pres-
sure, Its coefficients are taken

A, =i,
A, =0.11, (41)
A, = -0.31i,

These values satisfy condition (33). From (29) and (31) the coefficients of
the total solution follow:

CO = i,
Co = 3(L+iv;')A, - 1A, /(4ovy),
C, = 3(1 -iv;h)A ,+ 31 A, /(4ov, ),
According to (19) the total solution is, if we write y,Ins = ¢,
x + iy =isP/2P 0
+0.1 is'% {(cos § + (3-2p)sin §/4pz/2)e3ie +
+ (- 3 cos ¢ + (3-6p)sin §/4pvy)e T}, (42)

This function is shown in fig.8, where the angle of internal friction ¢ is

e e —— RO NS N,
i

Fig.8. One quadrant of the physical plane.



An analytical treatment of a class of plane plastic strain problems 157

chosen as 7/6, It represents the distribution of the stresses in the plastic
zone around a hole of oval shape, which is loaded with a constant normal
pressure and where the major principal stress is tangential to the boundary.
In fig, 8 the lines of constant s (constant isotropic stress) are indicated by
full lines, the lines of constant 8 by broken lines.

t¢. A circular hole loaded by a normal pressure and a shear stress.

Fig.9. A circular hole loaded by a normal pressure and shear stress.

In this case we have only to do with both circular solutions (20) and
(21). When (20) and (21) are added, one gets

ie

i8 by
+ Cisoe ,

X+ iy = Cos}‘oe

where C| is real and C, is imaginary, so that these coefficients can be
written as

CO

C, = cos ¥,

i sin ¢,

if the radius of I' is taken to be unity. Along the boundary I', s again
equals 1, so that ‘
. e+
X, iy, = e 1O
It can be seen from (40) that the resultant moment of the boundary forces
is -47mpo,Im [CoCL] = -4mpooCh(-iCy).

Indeed, if either C, or C} vanishes, then the moment also disappears,
but in the above case the resulting moment is -27po sin 2¢. This is only
natural since the shear stress along I' is T4 = -po, sin 2¢. It is uncertain
whether s approaches zero or infinity for great values of x and y. To
settle this problem we must look at the behaviour of the solution x + iy
in the neighbourhood of I". The radial coordinate r = [x2 + y2]? may not
become smaller than 1, for this would be impossible physically,

r = [|Co? s + |cy)? sP0]E,

d 1 - 2 2x3-1
éz?(kolcolzszxol +N0|C'o| S}\o );

dr

on I ds

= A 1Col% + Ay s |?.
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If dr/ds < 0 for s = 1, then s must decay to ensure that r grows from
unity. Then s must vanish for great values of r. In the other case, when
[dr/ds]s=; > 0, s will approach infinity,

This second example can be shown to be identical with an example given
by Nadai [6].

7. Conclusion.

In the foregoing sections a series of solutions of the problem of plastic
plane strain have been found, all of which are of the following form: the
Cartesian coordinates x and y of the physical plane are trigonometrical
functions of 8, the direction of the major principal stress, multiplied by
a power of s, a quantity directly connected with the isotropic stress. If
the boundary condition can be described in the same form, the boundary
value problem can be solved., In sec.4 this was done for a special sort
of boundary condition. There the shape of the boundary was arbitrary,
but the surface traction was a constant normal pressure.

The analytical method seems very suitable for the determination of the
stresses in the plastic region around a hole. The method may also be ap-
plicable to other sorts of plasticity problems, but this is beyond the scope
of the present paper,

The possibilities are limited in the first place by the requirement that
along the boundary the functions 6 and s are continuous and further that
there exists a one-to-one relation between the points (8,s) and (x,y) of the
boundary.

One conclusion of practical importance to be drawn from sec.3 is that
the plastic stress distribution around a hole of general shape, and loaded
by an arbitrary surface traction, will tend to circular symmetry at a great
distance from the hole, An example of this behaviour is shown in fig. 8,
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